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Abstract
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1. Introduction
Boosting - the iterative combination of classifiers to builda
strong classifier - is a popular learning technique. The al-
gorithms based on it, such as AdaBoost and GentleBoost,
are easy to implement, work reasonably fast, and in general
produce classifiers with good generalization properties for
large enough datasets. If the dataset is not large enough and
there are many features, these algorithms tend to overfit and
perform much worse than the popular Support Vector Ma-
chine (SVM) algorithm. SVM can be successfully applied
to all datasets, from small to very large.

The major drawback of SVM is that it uses, at run time,
when classifying a new examplex, all the measurements
(features) ofx. This poses a problem because, while we
would like to cover many promising features during train-
ing, computing all the features at run-time might be too
costly. This is especially true for object detection problems
in vision, where we often need to search the whole image
in several scales over thousands of possible locations, each
location producing one such vectorx. While several ap-
proaches for combining feature selection with SVM have
been suggested in the past (e.g., [17]), they are rarely used.

The complexity of the feature vector can be controlled
more easily by using boosting techniques over weak classi-
fiers based on single features (e.g., regression stumps), such
as in the highly successful system of [16]. In this case, the
number of features used is bounded by the number of itera-
tions in the boosting process. However, since boosting tends
to overfit on small datasets, there is a bit of a dilemma here.
An ideal algorithm would enable good control over the to-
tal number of features, while being able to learn from only
a few examples. Such an algorithm is presented in Sec. 5.

This new algorithm is based on GentleBoost. Within it
we implemented a regularization technique based on a sim-
ple idea: add corrupted copies of your training dataset to the
original one, and the algorithm will not be able to overfit. A
general background on fitting and regularization is given in
the next section.

2 Background

We are given a set ofn exampleszi = {(xi, yi)}
n
i=1, x ∈

X , y ∈ Y drawn from a joint distributionP on X × Y.
The ultimate goal of the learning algorithm is to produce a
functionf : X → Y such that theexpected errorof f given
by the expressionE(x,y)∼P(f(x) 6= y) is minimized. The
boolean expression inside the parentheses evaluates to one
if it holds, zero otherwise.

Since we do not know the distributionP we are tempted
to minimize theempirical error given by

∑n

i=1(f(xi) 6=
yi). The problem is that if the space of functions from which
the learning algorithm selectsf is too large, we are at risk

of overfitting(learning to dealonly with the training error).
Therefore, while the empirical error is small, the expected
error is large. In other words, thegeneralization error(the
difference of empirical error from expected error) is large.
Overfitting can be avoided by using any one of severalreg-
ularizationtechniques.

Overfitting is usually the result of allowing too much
freedom in the selection of the functionf . Thus, the most
basic regularization technique is to limit the number of free
parameters we use while fitting the functionf . For exam-
ple, in binary classification we may limit ourselves to learn-
ing functions of the formf(x) = (h⊤x > 0) (we assume
X = ℜn. h is a vector of free parameters). Using such
functions, we reduce the risk of overfitting, but may never
optimally learn thetarget function(i.e., the “true function”
f(x) = y that is behind the distributionP) of other forms,
e.g., we will not be able to learnf(x) = (x(1)2−x(2) > 0).

Another regularization technique is to minimize the em-
pirical error subject to constraints on the learned functions.
For example, we can require that the norm of the vector of
free parametersh be less than one. A related but different
regularization technique is to minimize the empirical error
together with a penalty term on the complexity of the func-
tion we fit. The most popular penalty term –Tikhonov reg-
ularization– has a quadratic form. Using the linear model
above, an appropriate penalty function would be||h||22, and
we would minimize

∑n

i=1((h
⊤xi > 0) 6= yi) + ||h||22.

Sometimes, adding a regularization term to the optimiza-
tion problem solved by the algorithm is not trivial. In the
most extreme case, the algorithm is a black box we cannot
alter at all. Still, a simple form of regularization called noise
injection can be employed. In the noise injection technique,
the training dataset is enriched by multiple copies of each
training data pointxi. A zero-mean, low-variance Gaussian
noise (independent for each coordinate) is added to each
copy, and the original labelyi is preserved. The motivation
is that if two data pointsx, x′ are close (i.e.,||x − x′|| is
small), we would likef(x) andf(x′) to have similar val-
ues. By introducing many examples with similarx values,
and identicaly values we teach the classifier to have this sta-
bility property. Hence, the learned function is encouraged
to be smooth (at least around the training points).

The study of the noise injection technique, which blos-
somed in the mid 90’s, established the following results on
noise injection: (1) It is an effective way to reduce gener-
alization error. (2) It has a similar effect on shrinkage (the
statistical term for regularization) of the parameters in some
simple models (e.g., [3]). (3) It is equivalent to Tikhonov
regularization [1]. Note that this does not mean that we can
always use Tikhonov regularization instead of noise injec-
tion, as for some learning algorithms it is not possible to
create a regularized version.

The technique we introduce next is similar in spirit to
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Input: (x1,y1), ..., (xm,ym) wherexi ∈ ℜ
n, yi ∈ Y .

Output: one synthesized pair (x̂, ŷ).

1. Select two examplesxa, xb at random.

2. Select a random featurek ∈ [1..n].

3. Setx̂← xa andŷ ← ya.

4. Replace featurek of x̂: x̂(k)← xb(k).

Figure 1:The Feature Knockout Procedure

noise injection. However, it is different enough that the re-
sults obtained for noise injection will not hold for it. For ex-
ample, the results of [1] use a Taylor expansion around the
original data points. Such an approximation will not hold
for our new technique, since the “noise” is too large (i.e.,
the new datapoint is too different). Other important proper-
ties that might not hold are the independence of noise across
coordinates, and the zero mean of the noise.

Our regularization technique is based on creating cor-
rupted copies of the dataset. Each new data point is a
copy of one original training point, picked at random, where
one random coordinate (feature) is replaced with a different
value–usually the value of the same coordinate in another
random training example. The basic procedure used to gen-
erate the new example is illustrated in Fig. 1. We call it the
Feature Knockout (KO) procedure, since one feature value
is being altered dramatically. It is repeated many times to
create new examples. It can be used with any learning al-
gorithm, and we use it in the analysis presented in Sec. 4.
However, as we focus our application emphasis on boost-
ing, we use the specialized version in Fig. 2.

The KO regularization technique is especially suited for
use when learning from only a few examples. The robust-
ness we demand from the selected classification function
is much more than local smoothness around the classifi-
cation points (c.f. noise injection). This kind of smooth-
ness is easy to achieve when example points are far from
one another. Our regularization, however, is less restrictive
than demanding uniform smoothness (Tikhonov) or requir-
ing the reduction of as many parameters as possible. Both
of these approaches might not be ideal when only a few ex-
amples are available because there is nothing to balance a
large amount of uniform smoothness, and it is easy to fit a
model that uses very few parameters. Instead, we encourage
redundancy in the classifier since, in contrast to the shortage
of training examples, there is an abundance of features.

3 Motivation

Intuition. It is a common belief that simpler is better.Oc-
cam’s razor- “entities should not be multiplied beyond ne-

cessity” - is often understood as suggesting the selection
of the simplest possible model that fits the data well. Thus,
given a dataset, we are encouraged to prefer classifierA that
uses70 features over classifierB that uses85 if they have
the same expected error, because the “simpler” classifier is
believed to generalize better.

In an apparent contrast to this belief, we know from our
daily experience that simpler is not always better. When a
good teacher explains something to a class, he will use a
lot of repetition. The teacher ensures that the students will
understand the idea, even if some of the explanations were
unclear. Since the idea could be expressed in a simple form
without repetition, the explanation is more complex.

It is also generally accepted that biological systems use
redundancy in their computations. Thus, even if several
computational units break down (e.g., when a neurons die)
the result of the computation is largely unaffected. We ex-
pect the learned model to be interpreted with some random
error. In these cases, we should not train a single model, but
instead train to optimize a distribution of models.

Redundancy in boosted classifiers.Boosting over a
weak classifier increases the weights of those examples it
does not classify well. The inclusion of a weak classifier
in the strong classifier therefore inhibits future use of sim-
ilar weak classifiers. In boosting over regression stumps,
each weak classifier is based on one feature. Hence, from
a group of similar features, we may expect to see only one
participating in the strong classifier. Our boosting over re-
gression stumps algorithm, presented in Sec. 5, modulates
this effect, by creating a new example for which relying on
the selected feature might lead to a mistake. However, it
does not change the values of the other features, making the
similar features suitable for classifying the new example.

Such a process yields a larger classifier, which uses more
features. This effect is clear in our experiments, and might
also be interpreted as “a more complex model is needed to
deal with more complex data.” However, using more fea-
tures does not necessarily mean that the classifier will lead
to a worse generalization error1.

Koltchinskii and Panchenko have derived bounds on the
generalization error of ensemble (voting) classifiers, such
as boosting, which take redundancy into consideration [10].
A precise description of their results would require the in-
troduction of more notation, and will not be presented here.
Informally speaking, they show that one can refine the mea-
sures of complexity used for voting classifiers such that
it would encourage ensembles that can be grouped into
a small number of compact clusters, each including base
(“weak”) classifiers that are similar to one another.

1The terms “simple” and “complex” are not trivial to define, and their
definition usually depends on what one tries to claim. In the next section
we will use more rigorous definitions for the cases we analyze.
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4 Analysis

The effect of adding noise to the training data depends on
the learning algorithm used, and is highly complex. Even
for the case of adding a zero-mean, low-variance Gaussian
noise (noise injection) this effect was studied only for sim-
ple algorithms (e.g. [3]) or the square loss function [1].

In Sec. 4.1 we study the effect of Feature Knockout on
the well known linear least square regression problem. We
show that it leads to a scaled version of Tikhonov regular-
ization. Compare this to Bishop’s result (using a Taylor ex-
pansion) that noise injection is equivalent to Tikhonov regu-
larization. Following in Sec. 4.2, we will try to analyze how
feature KO affects the variance of the learned classifier.

4.1 Effect of feature KO on linear regression

One of the most basic models we can apply to the data is
the linear model. In this model, the input examplesxi ∈
ℜn, i = 1..m are organized as the columns of the matrix
A ∈ ℜn×m; the correspondingyi values are stacked in one
vectory ∈ ℜm. The prediction made by the model is given
by A⊤h, whereh is the vector of free parameters we have
to fit to the data. In the common least squares case,||y −
A⊤h||2 is minimized.

In the case that the matrixA is full rank and overdeter-
mined, it is well known that the optimal solution ish =
A+y, whereA+ = (AA⊤)−1A is known as the pseudo in-
verse of the transpose ofA (our definition ofA is the trans-
pose of the common text book definition). IfA is not full
rank, the matrix inverse(AA⊤)−1 is not well defined. How-
ever, as an operator in the range ofA it is well defined, and
the above expression still holds, i.e., even if there is an am-
biguity in selecting the inverse matrix, there is no ambiguity
in the operation of all possible matrices on the range of the
columns ofA, which is what we care about.

Even so, if the covariance matrix(AA⊤) has a large con-
dition number (i.e., it is close to being singular), small per-
turbations of the data result in large changes toh, and the
system is unstable. The solution fits the dataA well, but
does not fit data which is very close toA, hence there is
overfitting. To stabilize the system, we apply regularization.

Tikhonov regularization is based on minimizing||y −
A⊤h||2 + λ||h||2. This is equivalent to using a regularized
pseudo inverse:A+

λ = (AA⊤ + λI)−1A, whereI is the
identityn×n matrix, andλ is the regularization parameter.

In many applications, the linear system we need to solve
is badly scaled, e.g., one variable is much larger in magni-
tude than the other variables. In order to rectify this, we may
apply a transformation to the data that weights each variable
differently, or equivalently weight the vectorh by applying
a diagonal matrixD, such thath becomeŝh = Dh.

Instead of solving the original systemAh = y, we now
solve the system̂Aĥ = y, whereÂ = D−1A. Solving

this system using Tikhonov regularization is termed “scaled
Tikhonov regularization.” IfD is unknown, a natural choice
is the diagonal matrix with the entriesDkk =

√
(AA⊤)kk

[13]. We will now show that using the knockout procedure
to add many new examples is equivalent to scaled Tikhonov
regularization, using the weight matrix above.

Lemma 1 When using the linear model with a least
squares fit, applying the knockout procedure in Fig. 1 to
generate many examples is equivalent to applying scaled
Tikhonov regularization whereDkk =

√
(AA⊤)kk.

Proof For simplicity of the proof, we will make the fol-
lowing two assumptions: (1) All features have an expecta-
tion of 0. Without this assumption, our derivations below
will be cluttered with many more elements. (2) Instead of
sampling using the knockout procedure, we will just use an
augmented data matrix containing all of the points that the
knockout procedure can create. This is equivalent to study-
ing the limit of infinite new examples, and allows us to ig-
nore all the elements that go to zero as the number of virtual
examples increases.

The vector ĥ which is fitted by means of a scaled
Tikhonov regularization technique, with a parameterλ is
given by:ĥ = Â⊤(ÂÂ⊤ + λI)−1Ây =
(D−1AA⊤D−1 + λD−1D2D−1)−1D−1Ay =
D(AA⊤ + λD2)−1DD−1Ay = D(AA⊤ + λD2)−1Ay.
Therefore,h = D−1ĥ = (AA⊤ + λD2)−1Ay.

Now considerÃ, the matrix whose columns contain
all the possible KO examples, together with the original
data points. Let̃y be the corresponding labels. By ap-
plying a least square linear fit to these inputs, we find:
h̃ = (ÃÃ⊤)−1Ãỹ. There arenm2 total examples cre-
ated. Since we assumed all features have a mean of zero,
all the knockout values of each feature cancel out. What
remains ism(n − 1) exact copies of each variable and
Ãỹ = m(n − 1)Ay.

We now examine the elements of the matrixÃÃ⊤. The
off diagonal elements represent the dot product between two
different variables. Each variable holds either its original
value, or a different value, but it may never happen that both
contain the knockout values at once. It happensm(n − 2)
times for each input example that both features hold the
original data sets. The rest of the cases average out to zero,
because while one value is fixed the other value goes over
all values which have a mean of zero. For the diagonal case,
because of symmetry, each value appearsnm times, making
the diagonalnm times the diagonal of the original matrix.

Putting it all together:̃h = (ÃÃ⊤)−1Ãỹ = (m(n −
2)AA⊤+2mD2)−1m(n−1)Ay = n−1

n−2 (AA⊤+λD2)Ay,
whereλ = 2

n−2 . The leading fraction does not change the
sign of the results, and is close to one. Ignoring it, we obtain
the results of a scaled Tikhonov regularization. The param-
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eterλ can be controlled by allowing the knockout procedure
to perturb more than one element.

To get a better understanding of the way Feature Knock-
out works, we study the behavior of scaled Tikhonov regu-
larization. As mentioned in Sec. 3, in the boosting case, the
knockout procedure is expected to produce solutions which
make use of more features. Are these models more com-
plex? This is hard to define in the general case, but easy to
answer in the linear least square case study.

In linear models, the predictionšy on the training data
take the form:y̌ = Py. For example, in the unregularized
pseudo inverse case we havey̌ = A⊤h = A⊤(AA⊤)−1Ay,
and thereforeP = A⊤(AA⊤)−1A. There is a simple mea-
sure of complexity calledthe effective degrees of freedom
[8], which is justTr(P ) for linear models. A model with
P = I (the identity matrix) has zero training error, but may
overfit. In the full rank case, it has as many effective degrees
of freedom as the number of features (Tr(P ) = n).

Lemma 2 The linear model obtained using scaled
Tikhonov regularization has a lower effective degree of
freedom than the linear model obtained using unregularized
least squares.

Proof This claim is very standard for Tikhonov regular-
ization. Here we present a slightly more elaborate proof.
Using the same rules we can prove other claims, such as
the claim that the condition number of the matrix we invert
using scaled Tikhonov regularization is lower than the one
achieved without regularization. A lower condition number
is known to lead to better generalization.

For scaled Tikhonov regularization we havey̌ = Py
whereP = A⊤(AA⊤ + λD2)−1A. Therefore,Tr(P ) =
Tr(A⊤(AA⊤ + λD2)−1A) = Tr((DD−1AA⊤D−1D +

λD2)−1AA⊤) = Tr((D(D−1AA⊤D−1 + λI)D)−1AA⊤) =

Tr(D−1(D−1AA⊤D−1 + λI)−1D−1AA⊤) =

Tr((D−1AA⊤D−1 + λI)−1D−1AA⊤D−1) =

Tr((EE⊤ + λI)−1EE⊤), whereE = D−1A.
Let USV ⊤ = E be the Singular Value Decompo-

sition of E, whereS is a diagonal matrix, andU and
V are orthonormal matrices. The above trace is ex-
actly Tr((US2U⊤ + λI)−1US2U⊤. Let S∗ be the di-
agonal matrix with elementsS∗

kk = S2
kk + λ, then

(US2U⊤ + λI)−1 = (US∗U⊤)−1 = US∗−1U⊤.
The above trace becomesTr(US∗−1U⊤US2U⊤) =

Tr(S∗−1S2U⊤U) = Tr(S∗−1S2) =
∑

k

S2
kk

S2
kk

+λ
<

rank(E) = rank(A). Compare this value with the effec-
tive degrees of freedom of the unregularized least square
solution: Tr(A⊤(AA⊤)−1A) = Tr((AA⊤)−1AA⊤) =
rank(A). The last equality also holds in the case where
A is not full rank, in which case(AA⊤)−1 is only defined
on the range ofAA⊤.

Similar to the work done on noise injection, we exam-
ined the effect of our procedure on a simple regression tech-
nique. We saw that feature knockout resembles the effect of
scaled Tikhonov regularization, i.e., high norm features are
penalized by the knockout procedure. However, boosting
over regressions stumps seems to be scale invariant. Mul-
tiplying all the values of a feature by some constant does
not change the resulting classifier, since the process that fits
the regression stumps (see Sec. 5) uses the values of each
feature to determine the thresholds that it uses. However, a
closer look reveals the connection between scaling and the
effect of the knockout procedure on boosting.

Boosting over stumps(e.g., [16]) chooses at each round
one out ofn features, and one threshold for this feature.
The thresholds are picked from them possible values that
exist in between every two sorted feature values. The fea-
ture and the threshold define a “weak classifier” (the basic
building blocks of the ensemble classifier built by the boost-
ing procedure [14]), which predicts -1 or +1 according to
the threshold. Equivalently, we can say that boosting over
stumps chooses from a set ofnm binary features – these
features are exactly the values returned by the weak classi-
fiers. Thesenm features have different norms, and are not
scale invariant. Let us call each such feature annm-feature.

Using the intuitions of the linear least squares case, we
would like to inhibit features of high magnitude. Allnm-
features have the same norm (

√
(m)), but different en-

tropies (a measure which is highly related to norm). These
entropies depend only on the ratio of positive values in each
nm-feature - call this ratiop.

Creating new examples using the Feature Knockout pro-
cedure does not change the number of possible thresholds,
and therefore the number of features remains the same. The
values of the new example in thenm feature space will be
the same for all features originating from then − 1 fea-
tures that were not changed in the knockout procedure. The
value for a knocked-out feature (featurek in Fig. 1), will
change if the new value is on the other side of the thresh-
old as compared to the old value. This will happen with
probability2p(1− p). If this sign flip happens then the fea-
ture is inhibited because it gives two different classifications
to two examples with the same label (KO leaves labels un-
changed). Note that the entropy of a feature with a positive
ratio of p and the probability2p(1 − p) behave similarly:
both rise monotonically for0 ≤ p ≤ 1/2 and then drop
symmetrically. Hence, We obtain the following result:

Lemma 3 Let t be a singlenm-feature created by com-
bining a single input feature with a threshold. The amount
of inhibition t undergoes, as the result of applying feature
knockout, grows monotonically with the entropy ofp.

Hence, similarly to the scaling in the linear case, the
knockout procedure inhibits high magnitude features (here
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the magnitude is measured by the entropy). Note that in the
algorithm presented in Sec. 5, a feature is used for knockout
only after it was selected to be a part of the output classifier.
Still, KO inhibits more weak classifiers based on these fea-
tures with higher entropies, making them less likely to get
picked again. It is possible to perform this higher-entropy
preferential inhibition directly on all features, therefore sim-
ulating the full knockout procedure. The implementation of
this is left for future experiments.

4.2 Bias/variance decompositions

Many training algorithms can be interpreted as trying to
minimize a cost function of the form

∑n

i=1 L(f(xi), yi),
whereL is a loss function. For example, in the0/1 loss
function L(f(x), y) = (f(x) 6= y), we pay 1 if the la-
bels are different, 0 otherwise. By applying the knock-
out procedure to generate more training data, an algorithm
that minimizes such a cost function will actually minimize:∑n

i=1 Ex̂∼CX(xi)L(f(x̂), yi), whereCX(x) represents the
distribution of all knocked-out examples created fromx.

In the case of the square loss function
L(f(x), y) = (y − f(x))2, the cost function can
be decomposed (similarly to [9]) into bias and vari-
ance, respectively:

∑n

i=1 Ex̂∼CX(xi)L(f(x̂), yi) =∑n

i=1 L(Ex̂∼CX(xi)f(x̂), yi) +∑n

i=1 Eŵ∼CX(xi)L(ŵ, Ex̂∼CX (xi)f(x̂)).
Consider the variance term. Since Feature Knock-

out changes dramatically the value of one of the fea-
tures in the vectorxi, one can show that if the term∑n

i=1 Eŵ∼CX(xi)L(ŵ, Ex̂∼CX (xi)f(x̂)) is bounded, then
our learning algorithm has abounded differences property
[12] which is equivalent to saying that by removing one of
the features, the value of the learned functionf will not
change by more than a bounded amount. Consider a situ-
ation (which exists in our object recognition experiments)
where our features are pulled independently from a pool of
many possible features. The bounded difference property
guarantees that with high probability the testing error we get
is close to the expectation of the testing error with regards
to selecting another set of random features of the same size.
The formal discussion of these results, which follows the
lines of [2] is omitted.

Let us now turn our attention to another “bias-variance”
decomposition. Consider one based on the0/1 loss func-
tion, as analyzed in [4]. We follow the terminology of [4]
with a somewhat different derivation, and for the presen-
tation below we include a simplified version. Assume for
simplicity that each training example occurs in our dataset
with only one label, i.e., ifxi = xj thenyi = yj . Define
theoptimal predictionf∗ to be the “true” labelf∗(xi) = yi.
Define themain predictionof a functionf to be just the pre-
dictionf(x). Thebias is defined to be the loss between the

optimal and main predictions:B(x) = (f(x) 6= f∗(x)).
The varianceV (x) is defined to be the expected loss of
the prediction with regard to the main prediction:V (x) =
Ex̂∼CX(x)(f(x) 6= f(x̂)). These definitions allow us to
present the following observation:

Observation 1 Let B0 be the set of all training- example-
indices for which the biasB(xi) is zero (the unbiased set).
Let B1 be the set for whichB(x1) = 1 (the biased set).
Then,

∑n

i=1 Ex̂∼CX(xi)(f(x̂) 6= yi) =
∑m

i=i B(xi) +∑
i∈B0 V (xi) −

∑
i∈B1 V (xi)

In the unbiased case (B(x) = 0), the variance (V (x)) in-
creases the training error. In the biased case (B(x) = 1), the
variance at pointx decreases the error. A functionf , which
minimizes the training cost function that was obtained us-
ing Feature Knockout, has to deal with these two types of
variance directly while training. Define the net variance to
be the difference of the biased variance from the unbiased;
a function trained using the Feature Knockout procedure is
then expected to have a higher net variance than a function
trained without this procedure. If we assume our corrup-
tion processCX is a reasonable model of the robustness
expected from our classifier, a good classifier would have
a high net variance on thetesting data2. The net variance
measured in our experiments shows the effect of the Fea-
ture Knockout approach. An interesting application that is
not explored in this paper is the exploitation of net variance
to derive confidence barsat a point (i.e., a measure of cer-
tainty in our prediction). Since Feature Knockout empha-
sizes these differences, it yields narrower confidence bars.

5 The GentleBoostKO algorithm

While our regularization procedure can be applied, in prin-
ciple, to any learning algorithm, using it directly when the
number of featuresn is high might be computationally de-
manding. This is because for each one of them training ex-
amples, as many asn(m−1) new examples can be created.
Covering even a small portion of this space might require
the creation of many synthesized examples.

The randomized procedure in Fig. 1 samples this large
space of synthesized training examples. Still, if there are
many features, the sampling would probably be too sparse.

However, for some algorithms our regularization tech-
nique can be applied with very little overhead. For boost-
ing over regression stumps, it is sufficient to modify those
features that participate in the trained ensemble (i.e., those
features that actually participate in the classification).

The basic algorithm used in our experiments is specified
in Fig. 2. It is a modified version of the GentleBoost algo-

2We omit the formal discussion on the relation between variance on
training examples, and variance on testing examples.
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Input: (x1,y1), ..., (xm,ym) wherexi ∈ ℜ
n, yi ∈ Y = ±1.

Output: Composite classifierH(x).

1. Initialize weightswi ← 1/m.

2. for t = 1, 2, 3, ...T .

(a) For each featurek, fit a regression functionf (k)
t (x)

by weighted least squares onyi to xi with weightswi,
i = 1..m + t− 1.

(b) Let kmin be the index of the feature with the minimal
associated weighted least square error.

(c) Update the classifierH(x)← H(x) + f
(kmin)
t

(d) Use Feature KO to create a new examplexm+t:

Select two random indices1 ≤ a, b ≤ m
xm+t ← xa

xm+t(kmin)← xb(kmin)
ym+t ← ya

(e) Set new example weightwm+t to that of its source:
wm+t ← wa

(f) Update the weights and normalize:

wi ← wie
−yif

(kmin)

t
(xi), i = 1..m + t

wi ← wi/
∑m+t

i=1
wi

3. Output the final classifierH(x)

Figure 2: The GentleBoostKO Algorithm. Steps d and e
constitute the differences from the original GentleBoost.

rithm [7]. GentleBoost seems to converge faster than Ad-
aBoost, and performs better for object detection problems
[15]. At each boosting round, a regression function is fit-
ted (by weighted least-squared error) to each feature in the
training set. We used linear regression for our experiments,
fitting parametersa, b and th so that our regression func-
tions are of the formf(x) = a(x > th)+ b. The regression
function with the least weighted squared error is added to
the total classifierH(x) and its associated feature (kmin) is
used for Feature Knockout (step d).

In the Feature Knockout step, a new example is created
using the class of a randomly selected examplexa and all
of its feature values except for the value atkmin. The value
for this feature is taken from a second randomly-selected
examplexb. The new examplexm+t is then appended to the
training set. In order to quantify the importance of the new
example in the boosting process, a weight has to be assigned
to it. The weightwm+t of the new example is estimated by
copying the weight of the example from which most of the
features are taken (xa). Alternatively, a more precise weight
can be determined by applying the total classifierH(x) to
the new example.

As with any boosting procedure, each iteration ends with

the update of the weights of all examples (including the new
one), and a new round of boosting begins. This iterative pro-
cess finishes when the weights of the examples converge,
or after a fixed number of iterations. In our experiments,
we stopped the boosting after 100 rounds–enough to ensure
convergence in all cases.

6 Experiments

UCI repository experiments. We evaluated our methods
on 10 UCI repository datasets that are suitable for binary
classification, either by thresholding the value of the target
function (e.g. the price in the housing dataset) at its me-
dian, or by picking a label to be the positive class. These10
datasets were: arrhythmia, dermatology, e-coli, glass, heart,
housing, letters, segmentation, wine, and yeast.

We have split each dataset randomly into 10% training,
90% testing, and ran each of the following classifiers: Gen-
tleBoost, GentleBoostKO (Fig. 2), AdaBoost, AdaBoost
with a knockout procedure (similar to GentleBoostKO), and
linear SVM. We also ran linear SVM on a dataset that
contained100 examples generated in accordance with the
knockout procedure of Fig. 1. SVMs with different nonlin-
ear kernels produced either similar or worse results. In addi-
tion, we report results for GentleBoost combined with noise
injection (the algorithm that adds gaussian noise to the ex-
amples), with the best noise variance we found. By select-
ing results according to the performance on the testing data,
the noise injection results were biased, and should only be
taken as an upper bound for the performance of noise injec-
tion. Tab. 1 shows the results, averaged over 10 independent
runs.

In this table we measured the mean error, the standard
deviation of the error, and the number of features used by
the classifiers (SVM always uses the maximal number of
features). We also measure the variance over a distribu-
tion of knockout examples for correct classifications (un-
biased variance), and incorrect classifications (biased vari-
ance) (Sec. 4.2). This variance was computed in the follow-
ing way: for eachtesting example we generated 50 knock-
out examples (Fig. 1), and computed the variance over these
50 examples. We averaged the variance over all biased and
unbiased testing examples. A good classifier produces more
variance for incorrectly classified examples, and only a little
variance for correctly classified ones.

It is apparent from the results that: (1) In general the
knockout procedure (KO) helps GentleBoost, raising it to
the same level of performance as SVM. (2) KO seems to
help AdaBoost as well, but not always. It is not clear
whether knockout helps SVM. (3) KO seems to help in-
crease the net variance (which is good, see Sec. 4.2). (4) As
expected KO produces classifiers that tend to use more fea-
tures. (5) KO shows different, mostly better, performance
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than noise injection (GentleBoostNI).
Visual recognition using the Caltech datasets. We

tested our GentleBoostKO algorithm on several Cal-
tech object recognition datasets that were presented in
[6]. In each experiment we had to distinguish be-
tween images containing an object and background im-
ages that do not contain the object. The datasets:
Airplanes, Cars, Faces, Leafs and Motorbikes, as
well as the background images were downloaded from
http://www.vision.caltech.edu/. For the ex-
periments we used the predefined splits (available to all the
datasets but the Leafs dataset). For leafs, we used a random
split of 50% training and 50% testing. Note that since our
methods are discriminative, we needed a negative training
set. For this end, we removed30 random examples from the
negative testing set, and used them for training.

To turn each image into feature-vectors we used500 C2
features. These extremely successful features allow us to
learn to recognize objects using few training images, and
the results seem to be comparable or better than the re-
sults reported in [5]. The results are shown in Fig. 3.
To compare with previous work, we used the error at the
equilibrium-point between false and true positives as our
error-measure. It is clear that for a few dozen examples,
SVM, GentleBoost and GentleBoostKO have the same per-
formance level. However, for only a few training examples,
GentleBoost does not perform as well as SVM, while Gen-
tleBoostKO achieves the same level of performance.

We also tried to apply Lowe’s SIFT features [11] to the
same datasets, although these features were designed for
a different task. For each image, we used Lowe’s bina-
ries to comute the SIFT description of each key point. We
then sampled from the training set 1000 random keypoints
k1, ..., k1000. Let {kI

i } be the set of all keypoints associ-
ated with imageI. We represented each training and testing
imageI by a vector of1000 elements:[vI(1)...vI(1000)],
such thatvI(j) = mini||kj −kI

i ||. Note that in [11] the use
of the ratio of distances between the closest and the next
closest points were encouraged (and not just the minimum
distance). For our application, which disregards all geo-
metric information, we found that using the minimum gives
much better results. For the testing and training splits re-
ported in [6] we got the following results (ME=mean error,
EqE=error at equilibrium):

Algorithm Planes Cars Faces Leaves Motor.
Lin. SVM ME 0.104 0.019 0.107 0.118 0.033
gentleB ME 0.118 0.036 0.168 0.137 0.026
gentleBKO ME 0.100 0.033 0.119 0.114 0.023
Lin. SVM EqE 0.108 0.018 0.111 0.126 0.007
gentleB EqE 0.120 0.037 0.166 0.132 0.003
gentleBKO EqE 0.111 0.030 0.136 0.120 0.008

Car type identification. This dataset consists of480
images of private cars, and248 images of mid sized vehi-
cles (such as SUV’s). All images are20 × 20 pixels, and

Dataset Algorithm Mean Unbias Biased Net Feat.
Error Var. Var. Var. Used

ARRHY. AdaB 47.0%±4.0 0.011 0.010 -0.001 6.2
AdaBKO 41.4%±4.3 0.022 0.026 0.004 45.0
GentleB 40.0%±7.0 0.100 0.130 0.030 43.8
GentleBKO 37.3%±3.7 0.042 0.068 0.026 55.2
GentleBNI 35.2%±1.2 0.093 0.137 0.044 45.2
LinSVM 38.5%±3.5 0.035 0.046 0.011 279.0
LinSVM KO 39.4%±4.9 0.035 0.050 0.015 279.0

DERM AdaB 4.7%±2.3 0.042 0.040 -0.002 1.6
AdaBKO 21.8%±43.8 0.015 0.165 0.187 17.4
GentleB 3.6%±2.5 0.651 0.712 0.061 3.8
GentleBKO 1.7%±1.5 0.018 0.135 0.117 18.9
GentleBNI 2.4%±0.4 0.534 0.607 0.073 6.2
LinSVM 0.8%±0.7 0.013 0.128 0.115 34.0
LinSVM KO 1.2%±1.0 0.012 0.302 0.290 34.0

ECOLI AdaB 10.4%±5.8 0.291 0.451 0.161 4.0
AdaBKO 11.7%±6.1 0.243 0.511 0.269 6.2
GentleB 10.9%±5.9 0.546 0.625 0.079 3.2
GentleBKO 5.8%±1.4 0.236 0.540 0.304 6.2
GentleBNI 7.0%±0.9 0.485 0.714 0.229 3.6
LinSVM 8.3%±3.3 0.235 0.483 0.248 7.0
LinSVM KO 6.8%±1.8 0.253 0.542 0.289 7.0

GLASS AdaB 37.6%±7.4 0.272 0.296 0.024 5.4
AdaBKO 33.3%±7.0 0.302 0.337 0.035 8.0
GentleB 34.8%±5.2 0.420 0.431 0.011 6.0
GentleBKO 30.6%±6.9 0.287 0.320 0.033 8.0
GentleBNI 33.6%±3.3 0.320 0.343 0.023 7.8
LinSVM 40.8%±2.8 0.238 0.250 0.013 8.0
LinSVM KO 37.9%±6.9 0.262 0.286 0.024 8.0

HEART AdaB 24.5%±3.6 0.139 0.217 0.078 6.2
AdaBKO 21.9%±4.4 0.148 0.319 0.171 10.4
GentleB 26.7%±5.2 0.223 0.342 0.119 9.8
GentleBKO 23.9%±3.4 0.191 0.351 0.160 12.6
GentleBNI 26.7%±2.4 0.215 0.334 0.119 11.4
LinSVM 23.8%±5.6 0.205 0.344 0.138 13.0
LinSVM KO 24.2%±4.5 0.193 0.344 0.151 13.0

HOUSING AdaB 16.9%±1.8 0.138 0.192 0.054 4.6
AdaBKO 16.7%±1.4 0.156 0.302 0.146 10.6
GentleB 20.0%±3.9 0.243 0.358 0.115 10.0
GentleBKO 17.6%±0.9 0.175 0.380 0.205 12.7
GentleBNI 20.0%±1.1 0.204 0.361 0.157 10.6
LinSVM 21.2%±4.6 0.297 0.454 0.157 13.0
LinSVM KO 17.1%±1.8 0.254 0.430 0.176 13.0

LETTERS AdaB 14.0%±0.8 0.018 0.062 0.044 4.6
AdaBKO 11.4%±2.8 0.040 0.147 0.107 9.4
GentleB 4.6%±0.9 0.117 0.577 0.460 15.0
GentleBKO 3.6%±0.6 0.094 0.551 0.457 15.5
GentleBNI 2.8%±0.1 0.096 0.510 0.414 15.6
LinSVM 4.2%±0.4 0.186 0.751 0.565 16.0
LinSVM KO 4.1%±0.5 0.172 0.749 0.578 16.0

SEGM. AdaB 7.0%±0.9 0.054 0.121 0.068 3.4
AdaBKO 9.4%±3.0 0.041 0.219 0.178 11.4
GentleB 6.7%±1.4 0.251 0.399 0.148 4.8
GentleBKO 7.8%±2.7 0.031 0.302 0.271 14.0
GentleBNI 6.7%±1.1 0.268 0.445 0.177 4.0
LinSVM 2.9%±1.6 0.146 0.409 0.263 19.0
LinSVM KO 3.4%±2.3 0.181 0.546 0.366 19.0

WINE AdaB 15.9%±8.2 0.128 0.155 0.027 3.8
AdaBKO 12.9%±6.1 0.124 0.318 0.194 11.2
GentleB 17.1%±6.9 0.605 0.723 0.119 4.2
GentleBKO 12.2%±4.9 0.117 0.324 0.207 11.9
GentleBNI 17.1%±2.6 0.216 0.288 0.072 9.0
LinSVM 12.5%±9.8 0.149 0.411 0.261 13.0
LinSVM KO 15.7%±8.5 0.166 0.379 0.213 13.0

YEAST AdaB 31.1%±1.0 0.020 0.025 0.006 2.4
AdaBKO 31.3%±1.1 0.023 0.034 0.011 4.6
GentleB 33.9%±5.7 0.329 0.443 0.114 6.4
GentleBKO 32.7%±2.6 0.280 0.438 0.158 8.0
GentleBNI 32.4%±0.8 0.326 0.495 0.169 7.2
LinSVM 31.2%±0.3 0.000 0.001 0.001 8.0
LinSVM KO 31.2%±0.3 0.000 0.000 0.000 8.0

Table 1:Results for datasets from the UCI repository. Each data set was
split to 10% training, 90% testing. The mean error, its standard deviation,
the mean biased, unbiased and net variance as well as the meannumber of
features used are shown for 10 independent experiments.
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Figure 3:A comparison using the C2 features between GentleBoost, GentleBoostKO (Fig. 2), and linear SVM on the five Caltech datasets:
Airplanes, Cars, Faces, Leafs and Motorbikes. The graphs show the the equilibrium error rate vs. the number of training examples used
from the class we want to detect. In each experiment, the testset was fixed to be the same as those described in [6].Lower right corner:
The results of applying the three algorithms to the car typesdataset, together with example images. The results shown are mean and
standard error of30 independent experiments versus percentile of training images.

were collected using the car detector of Mobileye corp., on
a video stream taken from the front window of a moving
car. The task is to learn to identify private cars from mid
sized vehicles, which has some safety applications. Taking
into account the low resolution and the variability in the two
classes, this is a difficult task. The results are shown on the
bottom right corner of Fig. 3. Each point of the graph shows
the mean error when applying the algorithms to training sets
of different size (between 5 and 40 percent of the data). The
rest of the examples were used for testing. It is evident that
for this dataset GentleBoost outperforms SVM. Still, Gen-
tleBoostKO does even better.

7. Summary and Conclusions

Boosting algorithms, and especially the use of GentleBoost
over regression stumps, are gaining a lot of popularity in
the computer vision community. However, GentleBoost
does not show good performance, compared to SVM, when
learning from a small dataset. In this work we propose an
enhancement to the GentleBoost algorithm, that brings its
level of performance to be the same of SVM.
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